Synthesis of TiO₂ and ZrO₂/TiO₂ Composite Microspheres and Their Photo-Catalytic Degradation of Methylene Blue

Ali İmran VAİZOĞULLAR¹, Ahmet BALCI², Mehmet UĞURLU³, Muhammet Hamdi KARAOĞLU²
¹ Medical Lab Program, Vocational School of Healthcare, Muğla Sitki Koçman University, Muğla-48000, Muğla TURKEY
² Department of Chemistry, Faculty of Sciences, Muğla Sitki Koçman University, Muğla-48000, Muğla TURKEY
vaizogullar@yahoo.com*

Abstract

TiO₂ and ZrO₂/TiO₂ composite microsphere particles were synthesized using the sol-gel method. Photoactivity of TiO₂ and ZrO₂/TiO₂ were compared. Particles were characterized using X-ray diffraction (XRD), infrared spectroscopy (FTIR), scanning electron microscopy (SEM) of X-ray (EDAX), and transmission electron microscopy (TEM). The study revealed that TiO₂ particles were microspheres. The decorating of ZrO₂ particles on TiO₂ surface was successfully carried out that was proved by SEM and TEM analyzes. The photo-catalytic activity of TiO₂ and ZrO₂/TiO₂ composite microsphere particles was examined using methylene blue (MB) as reference material under UV lamp. Our findings showed that ZrO₂/TiO₂ was more active than TiO₂. These findings suggest a new TiO₂-based catalyst structure to synthesize and to emphasize the importance of the shape of the catalyst.

Keywords

Semiconductors, Sol-Gel Chemistry, X-ray Diffraction, Transmission Electron Microscopy (TEM), Catalytic Properties

1. Introduction

Environmental pollution is the most important problem of the 21st century due to its impacts on the living systems (Qu et al. 2014). Water pollution causes numerous diseases i.e. diarrhea, cholera, typhoid fever, E-coli infections, and diphtheria. Azo dyes can also damage human health and environmental health. Some dyes are found to be toxic, mutagenic and carcinogenic (Lutpi et al.
2011). Heterogeneous photocatalysis plays an important role in environmental treatments such as water disinfection, hazardous waste remediation and water purification. Among those photocatalysts, TiO₂ is a well-used performer that degrades various organic dyes (Chala et al. 2014).

Some researchers reported that bulk and nanostructure anatase phase in TiO₂ has different chemical properties, catalytic reactivity, and surface acidity based on their different surface planes (Hua et al. 2012, Engates et al. 2011, Martra. 2000). However, there are some problems that inhibit its applications. First, TiO₂ particles absorb max 385 nm; second, its electron–hole pairs can easily be recombined (Aman et al. 2012). Some modifications on TiO₂ structure overcome these difficulties e.g. metal deposition (Fahim et al. 2009), or synthesis of the composites such as TiO₂/ZrO₂, TiO₂/Fe₂O₃, TiO₂/ZnO (Tokmakci et al. 2009, Shi et al. 2012, Benkara et al. 2013). It carries certain advantages to environmental applications for example enhancing high oxidation power and long durability against photo- and chemical corrosion (Lin et al. 2010). Zirconia (ZrO₂) nanoparticles are interesting due to their enhanced optical and electrical properties (Manirahulan et al. 2013). ZrO₂ is an n-type semiconductor having similar physicochemical properties with that of TiO₂ (Vishwanathan et al. 2004). But in the photocatalytic reactions, the activity of ZrO₂ is generally much lower than that of TiO₂.

There is no much information and research on composite ZrO₂ particles synthesis. Manirahulan et al. (2013) synthesized shell type ZrO₂@SiO₂ nanoparticles through the combination of chemical precipitation and seeded polymerization. Lucky et al. (2010) synthesized ZrO₂/TiO₂ nanoparticles and studied their solvent effects on the crystal growth. In most studies, ZrO₂/TiO₂ particles were synthesized as a powder or thin film. However, some problems are observed in this synthetic procedure. If it is synthesized as powders, separation from suspended solution can be very difficult as the interaction between thin films and substrates is weak. This phenomenon can be limited to their applications in the photo-catalytic degradation of pollutants (Lucky et al. 2010). This study aimed to synthesize TiO₂, ZrO₂/TiO₂ microsphere particles and to investigate their photocatalytic degradation of MB (methylene blue). We used composite microspheres phenomenon on photocatalytic for the first time.

Nomenclature

- TBT: titanium tetra propoxide
- TBOZ: zirconium tetra butoxide
- MB: methylene blue
- k: rate constant for pseudo-first order kinetic equation (min⁻¹)
- C: the concentration in solution at time t (mg L⁻¹)
- C₀: initial concentration of MB
- t: time
- r²: linear regression coefficient
- IEP: isoelectric point

2. Materials and Method

2.1. Preparation of TiO₂ and ZrO₂ particles

The TiO₂ core was prepared using the sol–gel method. 10 mL TBT and 25 mL absolute ethanol were mixed into 50 mL deionized water. The mixture was stirred for 4 h and centrifuged. Particles obtained were washed several times with deionized water followed by ethanol, dried at 80 degree for 4 h, and calcined at 600 degree for 3 h. For ZrO₂ particles, 10 mL TBOZ was dissolved in 150 mL ethanol and H₂O mixture. Ammonia solution was added dropwise to the mixture. pH was adjusted to 6 and aged for 12 h. Solution was filtered and calcined at 500 degree for 3 hours.

2.2. ZrO₂/TiO₂ particles

To synthesize ZrO₂/TiO₂ composite microsphere particles, 1 g TiO₂ particles synthesized above procedure were added 50 mL ethanol-water
mixtures. 20 mL zirconium (IV) butoxide (TBOZ) and 30 mL ethanol were added into the mixed solution and mixed for 3 h to complete the sol-gel process. Obtained particles were washed three times, dried in an oven at 80 degree for 12 h and calcined at 600 degree for 3 h.

2.3. Characterization
The crystalline phase and the component of the samples were examined by XRD (Rigaku Dmax 350) using copper K radiation ($\lambda = 0.154056$ nm). The IR spectrum analysis of precursor was carried out considering IR measurement system (Thermo-ScientificNicolet IS10-ATR). The microstructure and shape of the particle were investigated using SEM (JEOL JSM-7600F) and TEM (JEOL JEM 2100F HRTEM). The element was determined with (JEOL JSM-7600F) EDAX analyzer with SEM measurement. Evaluation of photoactivity was performed in section 3.5.

3. Research Data

3.1. XRD analysis of ZrO$_2$, TiO$_2$ and ZrO$_2$/TiO$_2$ composite microspheres
Figure 1(a,b,c) show that XRD spectrums of ZrO$_2$, TiO$_2$ and ZrO$_2$/TiO$_2$ composite microsphere particles, respectively. In Figure 1a shows characteristic peaks at 2θ=28.09, 30.08, 31.23, 35.19, 50.42, 60.01 corresponding to the t-ZrO$_2$ and m-ZrO$_2$ phases (JCPDS78-0047), (JCPDS88-1007). After preparation and calcination process, t-ZrO$_2$ was dominant in t-ZrO$_2$ and m-ZrO$_2$ mixture. The peak intensity of t-ZrO$_2$ (28=30.08) was higher than m-ZrO$_2$ (28=28.09 and 31.23) because of calcination temperature. ZrO$_2$ particles converted from tetragonal phase to monoclinic phase over at 600°C (Qu et al. 2014). But in this study, synthesized ZrO$_2$ particles were calcined at 500°C therefore, the peak intensity of t-ZrO$_2$ phases was higher than m-ZrO$_2$. In Figure 1b, the existence of notable peaks of 28=25.23, 36.94, 47.96 and 55.00 corresponding to the anatase phase in TiO$_2$ (JCPDS no. 21-1272). The characteristic peaks appear at 2θ=25.26, 28.09, 30.08, 36.94, 47.81, and 55.01 corresponding to the anatase phase in TiO$_2$ and tetragonal, monoclinic phase in ZrO$_2$.

3.2. IR analysis
Figure 2a and 2b show FT-IR spectrum of TiO$_2$ and ZrO$_2$/TiO$_2$ composite microsphere particles respectively. The bands appeared at 3252 cm$^{-1}$ and 1632 cm$^{-1}$ can be attributed to the -OH stretching of water (Figure 2a). Figure 2a shows Ti-O-Ti stretching peak at 798 cm$^{-1}$. The absorption bands in the range of 1100–1000 cm$^{-1}$ were attributed to the O-alkyl groups linked to Ti such as O-C$_2$H$_7$, O-C$_3$H$_7$ (Ivanova et al. 2002). In our study, there was no absorption peaks observed between 1100-1000 (Figure 2b). This can be related to replacing of alkyl groups with OH groups in water; therefore, whole TTIP was obtained as TiO$_2$ during the hydrolysis reaction. We observed very small stretching and vibration peaks of CH$_2$-CH$_3$, C-O-H, and C-H at 1383 cm$^{-1}$, 1465 cm$^{-1}$, 2922 cm$^{-1}$.
Synthesis of TiO₂ and ZrO₂/TiO₂ Composite Microspheres and Their Photo-Catalytic Degradation of Methylene Blue, Vaizoğullar et al

respectively. It was concluded that all organic species resulted from precursor powder largely disappeared after calcination. Very small and broadening peaks at around 1613 cm⁻¹ and at 3381 cm⁻¹ were corresponded to the stretching vibration of the hydroxyl (O–H) bonds from water (Figure 2b). The peak of 810 cm⁻¹ originated from bending vibration of Zr–O. The peak at around 721 cm⁻¹ could attribute to the Zr–O–Ti bonds (Wang et al. 2008).

3.3. SEM and EDAX

SEM and EDAX analysis reflect the size and shape of the synthesized particles. Figure 3a and Figure 3b show SEM images of TiO₂ and ZrO₂/TiO₂ particles respectively. Figure 3a shows smooth and co-shape TiO₂ particles with an average diameter of about 400-700nm (Figure 3a). The surface of TiO₂ particles was rough as compared to ZrO₂ on TiO₂ (Figure 3b). After decorating of ZrO₂ on TiO₂ surface, the average diameter of TiO₂ did not increase significantly. Figure 3b describes high proportional bright particles. This can be attributed to the edge effect on undecorated sample appearing as a bright turbidity. At the same time, the protrusions and the circumferences of the TiO₂ surface led to the large amount of secondary electrons, which causes brighter appearance than other parts. The presence of Ti and Zr atoms were observed by EDAX analysis as a qualitatively (Figure 4). EDAX analysis along the cursor crossing a particle showed Ti located at both and ends and Zr was in the middle because whole TiO₂ surface may not decorate with ZrO₂.

Figure 2a. FTIR spectra of TiO₂ particles

Figure 2b. FTIR spectra of TiO₂/ ZrO₂ composite microsphere particles

Figure 3a. SEM images of TiO₂ particles

Figure 3b. SEM image of ZrO₂/TiO₂ composite microsphere particles

Figure 4. EDAX analysis of ZrO₂/TiO₂ composite microsphere particles
3.4. TEM analysis
The further investigation of ZrO₂/TiO₂ composite microsphere particles using TEM analysis is given in Figure 5. The surface of TiO₂ particles was multilayer because of ZrO₂ particles and it's clearly observed with roughness (Figure 5). ZrO₂/TiO₂ particles were irregular and spherical. The dark in the center and luminous in border area confirm the synthesis of ZrO₂/TiO₂ composite microsphere particles (Qu et al. 2014).

<table>
<thead>
<tr>
<th>Particles</th>
<th>TiO₂</th>
<th>ZrO₂/TiO₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>k x 10³ (min⁻¹)</td>
<td>4,9</td>
<td>8,02</td>
</tr>
<tr>
<td>r²</td>
<td>0,98</td>
<td>0,97</td>
</tr>
</tbody>
</table>

According to the Table 1, pseudo first rate constants are 4.9x10⁻³ and 8.02x10⁻³ for TiO₂ and ZrO₂/TiO₂ respectively. This implied that the reaction rate of ZrO₂/TiO₂ was faster than TiO₂ for MB degradation.

Our experimental data are in good agreement with pseudo-first order kinetic as indicated by plotting ln (Cₐ/C) against irradiation time as shown in Figure 7. The removal efficiency percentage of MB in the presence of TiO₂ and ZrO₂/TiO₂ was 51 % and 82 % respectively. ZrO₂/TiO₂ particles were found better photoactive than TiO₂ to remove MB from water solution. The enhancement of photoactivity in ZrO₂/TiO₂ particles can be explained in several ways: (i) ZrO₂ particles dispersed into the TiO₂ and inhibited recombination of e⁻/h⁺ pairs (Pirzada et al. 2015). (ii) ZrO₂ has a high band gap, in this case, both TiO₂ and ZrO₂ electron charges were confined into TiO₂ area. Depending on the ZrO₂ thickness on TiO₂ surface, emission wavelengths decreased and
quantum yields increased resulting in increasing of photoactivity (Schattka et al. 2002). (iii) pH value is an important parameter affecting the photoactivity. If solution pH was lower than that of IEP of ZrO2/TiO2, the surface charge of ZrO2/TiO2 was positively charged (Aparna et al. 2001). When we studied at natural pH (around 5) poor degradation yield was observed for ZrO2/TiO2 composite microsphere particles. In contrast, pH value was adjusted to 9, photoactivity of ZrO2/TiO2 increased. This can be explained that MB has a special affinity for negatively charged surfaces (Chaudhuri et al. 2001). Therefore increasing of pH in solution increased the number of hydroxyl groups and the number of negatively charged sites. This caused enhancing attraction between the dye and adsorbent surface resulting in increased the photoactivity (Avena et al. 2001). It has been also reported that addition of small amounts of ZrO2 into TiO2 can prevent phase transformation from anatase to rutile; therefore, ZrO2 enhances the phase stability for the phase transformation of pure TiO2 (Kim et al. 2009). We described that the formation of a mutual chemical interaction between the pure oxides when they are co-precipitated together (Ti-O-Zr) leading to a profound effect on the photocatalytic properties (Kim et al. 2013).

References

